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Abstract

Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is 

well-known that the liver and the thyroid are intimately linked with TH playing important roles in de 

novo lipogenesis (DNL), beta-oxidation (FAO), cholesterol metabolism, and carbohydrate 

metabolism.  Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of 

low-density lipoprotein (LDL) levels, triglycerides (TAG), and apolipoprotein B levels. Even in 

euthyroid patients, lower serum free thyroxine levels are associated with higher total cholesterol 

levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of non-alcoholic fatty 

liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of 

NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH 

analogs, and TR agonists as potential therapies for NAFLD and hyperlipidemia.  Thus, TH plays an 

important role in maintaining hepatic homeostasis and this continues to be an important area of study. 

A review of TH action and TH actions on the liver will be presented here. 

Thyroid Hormone Signaling and Action
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The two main forms of TH are triiodothyronine (T3), the active form of TH, and tetraiodothyronine 

(T4), a prohormone activated by deiodinases at the cellular and circulatory level. Secretion of TH 

(primarily T4) from the thyroid gland is regulated by the thyrotrophs of the anterior pituitary, which 

secrete thyroid-stimulating hormone. The anterior pituitary is controlled by neurons in the 

hypothalamus which secrete thyrotropin-releasing hormone.  After TH is secreted from the thyroid, it 

is taken up by transporters on cell membranes and deiodinases within the cell specifically regulate the 

amount of T3 available to act intracellularly.(1, 2)

The actions of T3 are mediated by the thyroid hormone receptor (TR), which is primarily a nuclear 

receptor that acts as a T3-inducible transcription factor. There are two major isoforms of the TR, TR 

and TRß, and expression of TR isoforms is tissue-dependent. TR is the predominant receptor in 

bone and heart whereas TRß is the predominant receptor in liver and kidney. The TR forms a 

heterodimer with another nuclear receptor, the retinoid X receptor (RXR), and binds to thyroid 

hormone response elements (TREs) in regulatory regions of target genes.  Expression of target genes 

is regulated by TR’s recruitment of co-regulator proteins. Classically, in the absence of T3, the 

nuclear receptor corepressor 1 (NCoR1) and the silencing mediator of retinoid and thyroid hormone 

receptors (SMRT; NCoR2) are recruited by the TR/retinoid X receptor heterodimer to inhibit gene 

transcription via histone deacetylation by histone deacetylase 3 (HDAC3). In the presence of T3, co-

activators are recruited, while co-repressors are dismissed, and TH responsive gene expression 

occurs.(1) Figure 1.

There is evidence that response element independent TH signaling and action, termed noncanonical 

TH signaling, which is mediated by cytoplasmic TRs, or other proteins that bind TH or TRs, exists.(3) 

Noncanonical TH signaling was explored because of the rapid onset of some actions of TH are 

inconsistent with genomic actions.(4) Recent work suggests that canonical signaling is the primary 

mediator regulating the hypothalamic-pituitary-thyroid axis (via TRß) but that serum and liver TAG 

levels are influenced by noncanonical TH action.(5) 

The Role of Co-Activators and Co-Repressors in TH Signaling A
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Subunits of the corepressor complex include NCoR1, SMRT/NCoR2, and HDAC3.(6) In the presence 

of TH, TRs release the corepressor complex and recruit coactivator complexes. Coactivator 

complexes consist of the steroid receptor coactivator (SRC) family, CBP/p300 and other 

transcriptional activators. As a result of coactivator recruitment, histone acetylation and 

transcriptional activation occurs. These coregulators bind to multiple nuclear receptors including the 

TR, peroxisome proliferator-activated receptor, retinoic acid receptor. and liver X receptor integrating 

lipid homeostasis.(7) Importantly, the ratio between corepressors and coactivators recruited can be 

altered by their levels of expression. Thus, sensitivity to a set amount of T3 can be enhanced in the 

absence of corepressors. (8)

Embryonic knock-out (KO) of NCoR1, SMRT, HDAC3 and SRC-3 is lethal so hepatocyte-specific, 

loss-of-function models have been used and have led to critical insights into these proteins.(9-13) For 

example, the deletion of NCoR1 in hepatocytes leads to hepatosteatosis due to increased 

lipogenesis.(14, 15) And, while NCoR1 and SMRT are highly homologous modular proteins, they have 

distinct roles. For example, SMRT specifically targets RAR action.(15, 16) Additionally, in contrast to 

NCoR1, if SMRT is deleted globally in a post-natal fashion mice develop profound obesity.(17) 

The role of coregulators in TH action has been examined. Mice have been developed that express a 

hypomorphic NCoR1 allele (NCoR∆ID), which cannot interact with the TR.(8, 18) These mice develop 

normally but demonstrate enhanced TR target gene expression as compared to WT mice, consistent 

increased sensitivity to TH.(18) Genome wide human studies support the role of NCoR1 in mediating 

tissue sensitivity to TH with a recent large analysis showing that increased NCoR1 levels are 

associated with higher free T4 levels.(19) SRC-1-deficient mice have an altered set point of some TH 

responsive genes, consistent with the idea that the NCoR1/SRC-1 ratio controls sensitivity to TH.(20) 

Thus, the set-point of the HPT axis is determined by the balance of coactivators and corepressors. 

Cholesterol metabolism
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Since the 1930s it has been known that TH is one of the most significant regulators of serum 

cholesterol levels.(21) TH plays several roles in regulating hepatic cholesterol metabolism including 

synthesis, endocytosis via the LDL-receptor (LDL-R), and peripheral uptake and hepatic excretion via 

reverse cholesterol transport (RCT). Conflicting data exist with regards to TH status on TAG and 

HDL levels.

A. Biosynthesis 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the rate-limiting step in 

cholesterol biosynthesis, HMG-CoA to mevalonate.(22, 23) This enzyme is highly expressed in the liver 

and is the primary site of feedback regulation by cholesterol.(23-25) In addition to TH, estrogen, 

glucagon, insulin, and glucocorticoids have been shown to alter HMG-CoA reductase expression but 

it is thought TH  has the largest impact on HMG-CoA reductase.(23)

In rats, HMG-CoA reductase activity and cholesterogenesis increase beginning 30 hours after T3 

administration and peak within 48-72 hours.(26) HMG-CoA reductase protein and mRNA levels 

increase and mRNA is stabilized in the presence of T3.(22, 27) Despite the T3-mediated increase in 

HMG-CoA reductase activity, cholesterol levels drop.(28) No TRE sequences have been found 

upstream of the HMGR gene but several genes that promote HMG-CoA reductase expression are 

activated by T3, including upstream stimulatory factor-2 (Usf-2), sterol regulatory element binding 

protein 2 (Srebp2), and nuclear factor-y (NF-Y).(29)

B. LDL-R Mediated Endocytosis 

The hepatic LDL-R mediates endocytosis of LDL, removing LDL from circulation, lowering serum 

LDL levels. Transcription of LDL-R mRNA is under the control of SREBPs and SREBP2 is 

particularly important.(30-33) In animal studies, TH induces LDL-R gene expression. (28, 34, 35) This is 

thought to be from two mechanisms- direct regulation through TR recruitment to the LDL-R 
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promoter, where TREs are located and indirect by activation of Srebp2, which then activates the 

LDL-R.(36, 37)

TH administration rapidly lowers cholesterol levels and treating hypothyroidism lowers cholesterol 

levels in humans.(38) This is attributed to an increase in receptor-mediated LDL catabolism, consistent 

with aforementioned animal studies.(39) TH also lowers LDL levels through reducing proprotein 

convertase subtilisin/kexin type 9 (PCSK9) levels, which is seen with administration of the TH analog 

eprotirome, including in patients already on maximal statin therapy.(40, 41) Also, subclinical 

hypothyroidism is associated with higher levels of PCSK9.(42) 

C. Reverse Cholesterol Transport (RCT)

RCT is a critical process by which the body maintains cholesterol homeostasis. It is the transport of 

excess cholesterol in peripheral tissue by HDL to the liver for excretion as bile acids.(43) RCT is 

important because many cells and tissues cannot break down cholesterol and excess cholesterol is 

toxic to cells.(43) TH acts on both the peripheral tissue and the liver in many steps of this pathway.(44)

Peripherally, cholesterol efflux is in part mediated by adenosine triphosphate (ATP) binding cassette 

transporter ABCA1 to ApoA1, a lipid-poor apolipoprotein.(43) TH increases ApoA1 levels in HDL by 

stimulating hepatic lipase, facilitating cholesterol efflux.(35, 45, 46) Cholesteryl ester transfer protein 

(CEPT) is a transport protein that transfers neutral lipids between lipoproteins, playing a role in RCT 

and HDL metabolism. CEPT levels correlate with free T4 levels.(47)

Within the liver, TH induces cholesterol 7 alpha-hydroxylase (Cyp7A1), the rate-limiting enzyme 

converting cholesterol into bile acids. Rodent studies showed that T3 and TRß agonists induce 

Cyp7a1 and increase fecal excretion of bile acids.(35, 48) Although human data at first was mixed, later 

in vitro studies confirmed that in human hepatocytes, CYP7A1 is a direct TR target and T3 induces 

CYP7A1 in human liver cells.(49) Clinical trial data from patients treated with KB2115, a synthetic 

TRß agonist, showed a reduction in serum LDL and a dose-dependent increase in serum C4, a plasma A
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marker of cholesterol to bile acid conversion.(50)  Reductions in CYP7A1 activity are associated with 

higher levels of TC and LDL, translating to an increase risk of coronary artery disease in humans, 

supporting this enzymes clinical relevance.(51, 52)

The last step of RCT is excretion of bile acids, or cholesterol, into the bile.(43) This process is 

mediated by ATP-binding cassette transporters, subfamily G, member 5- ABCG5, and member 8- 

ABCG8.(53, 54) T3 treatment increases levels of Abcg5 and Abcg8 gene expression and increases biliary 

cholesterol excretion in mice. Mice lacking Abcg5 show no change in biliary cholesterol excretion 

with T3, highlighting the role of T3 and Abcg5 in RCT.(55)

Fatty acid β-oxidation Figure 2.

Fatty acid beta-oxidation (FAO) is the process by which long-chain fatty acids are oxidized for energy 

during times of energy depletion.(56, 57) Cytosolic lipases mediate the release of free fatty acids (FFA) 

from TAGs for FAO.(58) Hepatic lipase activity is reduced in hypothyroidism, which is reversed with 

TH treatment in animal and human studies.(59-61) TH stimulates hepatic lipophagy, increases the 

amount of lipid laden autophagosomes, where TAGs are broken down to FFAs, and is necessary for 

FFA delivery to mitochondria.(62, 63)

Mitochondria are known TH targets and play a key role in FAO via the electron transport chain and 

tricarboxylic acid (TCA) cycle.(63-65) Carnitine palmitoyltransferase-1α (Cpt1α) is the rate-limiting 

enzyme of FAO and TH stimulates Cpt1 transcription.(66) Indirectly, TH acts through Sirt1 and 

PPAR  to increase levels of Cpt1.(67-69) TH also induces mitochondrial enzymes required for FAO 

and oxidative phosphorylation including Mcad, Pdk4, Ucp2, Acot2 and Acox1.(70-73) Additionally, TH 

increases mitochondrial biogenesis and mitophagy via induction of the nuclear receptors PGC-1 and 

ERR to increase mitochondrial turnover and ensures mitochondrial quality control.(74) Induction of 

these nuclear receptors may be the primary mechanism driving mitochondrial activity.(74)

De novo lipogenesis A
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The process by which glucose is synthesized into fatty acids is called de novo lipogenesis. Fatty acids 

are then esterified to form TAGs and either packaged into very low-density lipoprotein (VLDL), 

stored as fat droplets, or used for synthesizing and repairing cellular parts. DNL is a tightly controlled 

metabolic process, active in the fed state and suppressed during fasting.(75) TH is an activator, both 

directly and indirectly, of DNL.

A. Direct mechanisms 

The first, committed step in hepatic fatty acid synthesis is the carboxylation of acetyl CoA to malonyl 

CoA, catalyzed by acetyl CoA carboxylase alpha (ACC).(64) T3 stimulates transcription of ACC and a 

TRE is present in one of the two ACC promoters.(76) T3 stimulation of ACC is enhanced by binding 

sterol regulatory element-binding protein-1c (SREBP1c), a key enzyme in lipogenesis.(77)

Fatty acid synthetase (Fasn) is a multifunctional enzyme that primarily catalyzes the formation of 

palmitate, a long-chain saturated fatty acid, from acetyl-CoA and malonyl-CoA.(78-80) Similar to ACC, 

Fasn expression is stimulated by T3 and a TRE has been localized to the Fasn promotor.(81-83)

TH-responsive Spot14 (Thrsp; also known as Spot14) is induced by TH and required for hepatic 

DNL.(84-87) There is a TRE in the Thrsp promoter in both rodent and human genes and Thrsp 

overexpression promotes TAG accumulation in liver further supporting direct effects of T3 on 

DNL.(88, 89)

B. Indirect mechanisms

NADPH, which is generated by malic enzyme (ME), provides energy for DNL. In chick embryo 

hepatocytes, T3 increases ME transcription.(90) TREs have been located in the ME promoter and T3 

activation of ME is distinct from ACC.(91, 92) In this way, TH helps provide the energy needed for 

DNL. A
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There are many transcription factors that work together to activate DNL. Carbohydrate responsive 

element binding protein (ChREBP) is one such factor that has a role in activating several lipogenic 

genes including FASN, ACC, and ATP citrate lyase (ACLY).(93) Both mouse and human ChREBP 

promoter activity is increased in the presence of T3 consistent with an increase in ChREBP gene 

expression and protein levels is seen with T3 administration.(94, 95) Recent work from our laboratory 

and others suggest that the TH-signaling system also regulates ChREBP levels. ChREBP is a potent 

lipogenic regulator and thus it remains very plausible that TH is able to augment lipogenesis 

indirectly via ChREBP.

SREBP-1c is one of the most important genes in DNL and it’s targets include lipogenic genes FASN, 

ACC, ACLY, and stearoyl-CoA desaturase-1 (SCD1).(96, 97) The data regarding how TH changes levels 

of SREBP1c remains mixed. In mice, Srebp-1c has been shown to be negatively regulated by T3.(98) In 

chick embryo hepatocytes, T3 treatment increases the amount of mature Srebp-1.(99) Hep G2 cells, 

which are human hepatocytes derived from hepatocellular carcinoma, increase SREBP-1 levels with 

T3 treatment.(100) Further studies are needed to clarify the exactly how TH might alter SREBP-1 

expression. 

TH and NAFLD

As free T4 levels drop, the risk of NAFLD increases across the spectrum of euthyroidism and 

hypothyroidism.(101) Conversely, NAFLD is associated with hypothyroidism.(102) TH, TH metabolites, 

TRß agonists and liver specific analogs have been studied as potential therapeutics for treating both 

serum dyslipidemias and as a potential therapy for NAFLD. T4, T3 and TH metabolites, including 

3,5-diiodo-L-thyronine (T2) and 3-iodothyronamine (T1AM), have been evaluated.(103-105) Many of 

the drugs have unwanted side-effects, however, resmetirom may be promising. Sinha et al. (2018) 

recently extensively reviewed this topic.(106) This remains an active area of study given the need to 

find effective treatment for NAFLD. The tables below serve as a brief overview of the most studied 

compounds. Table 1. Table 2. A
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TH and Carbohydrate Metabolism

Similar to lipid metabolism, the role TH plays in glucose homeostasis and insulin sensitivity is 

complex and mixed. Hyperthyroidism is associated with elevated levels of basal hepatic glucose 

production, increased levels of gluconeogenesis and glucose utilization. This is countered by TH 

actions on skeletal muscle, which increase glucose uptake peripherally.(107) Hypothyroidism is 

associated with suppressed levels of gluconeogenesis.(68) There is a positive correlation between 

plasma TH levels and hepatic glucose production in hyperthyroid patients, which resolves with 

treatment of hyperthyroidism.(108) This is in part due to induction of phosphoenolpyruvate 

carboxykinase (PEPCK), a key mediator of gluconeogenesis.(109) This data was reviewed by Mullur 

(2014) and Sinha and Singh et al. (2014).(68, 110) 

Summary

TH acts through multiple pathways in the liver to maintain hepatic homeostasis, often in contrasting 

ways. Despite activation of DNL and an increase in FA uptake, hepatic TAG levels remain stable 

after TH administration. This is due to the strong induction of FAO, mitophagy, and lipolysis. In 

terms of cholesterol metabolism, TH induces HMG-CoA reductase, facilitates LDL-R mediated 

endocytosis, and promotes cholesterol excretion as bile acids. TH analogs and TR agonists remain a 

promising area of research for the treatment of NAFLD, though unwanted side-effects have hampered 

development. TH also plays a role in hepatic gluconeogenesis and insulin sensitivity. Given this 

intimate link, it is clear that further focus on the physiology of TH action in the liver is required.

Figure 1: Gene Regulation by the TR and its co-regulators. In the absence of T3, gene expression 

is inhibited by the CoR complex. In the presence of T3, CoA’s are recruited, allowing gene 

expression to occur. 
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 Figure 2: DNL (dashed) and FAO (bold) and important enzymes responsive to TH. Substrate for 

DNL is FFA or glucose, which is metabolized to acetyl-CoA via the TCA cycle. Fasn, ACC, and 

Thrsp key enzymes controlling DNL. Cpt1α, Mcad, Ucp2, and Pdk4 are all involved in FAO and 

directly or indirectly acted on by TH.
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Table 1: TR agonists that have been studied for use in the treatment of serum lipid disorders and NAFLD. Specifically targeting 

TRß by selecting drugs with higher TRß affinity has been a common strategy to target TH signaling in the liver. 

MGL-3196 (Resmetirom) - TR-selective agonist (Binding affinity: TRβ>TR⍺.)  

 Study Findings Adverse Events Source 

 

Adults with biopsy proven NASH (fibrosis stages 1 – 

3) randomly assigned resmetirom had relative and 

absolute hepatic fat reduction and 

reduction/resolution in NAS and NASH features on 

liver biopsy. Improvement in markers of liver injury 

and fibrosis (AST, ALT, GGT, PRO-C3) 

Reduction in serum LDL, TAG, apoB levels. 

Diarrhea and nausea. (111) 

Multiple dose, two-week study of healthy adults 

showed reduction in LDL, HDL beginning at 50 mg 

dose and TAG and apoB beginning at 80 mg dose.  

No change to blood pressure or heart rate. 

No increases in liver enzymes.  

(112) 

KB2115 (eprotirome) – Hepatic specific, TR-selective agonist (Binding affinity: TRβ>TR⍺). 

h
u
m

an
 



 Study Findings Adverse Events  Source 

 

Reduction in serum TC, LDL, apoB in patients with 

hyperlipidemia.  Serum TAG reduction on 200 mg 

dose but not 100 mg dose.  

Transient increase in ALT.  

No change in heart rate or markers of bone 

turnover. 

(113) 

Reduction in serum TC, LDL, TAG in patients with 

familial hypercholesteremia.  

Dose-dependent increase in ALT and AST. 

Increase in GGT, ALP, conjugated bilirubin.  

(114) 

Reduction in serum TC, LDL, HDL, TAG in statin-

treated patients. 

Transient, reversible increase in ALT which 

did not meet statistical significance.  

(41) 

Short term safety study. Reduction in serum TC, 

LDL in overweight patients with total cholesterol 

>5.0 mmol/liter.  

Mild, non-significant increase in serum 

hepatic enzymes.  

(50) 

GC-1 (sobetirome) – TR-selective agonist (Binding affinity: TRβ>TR⍺). Has not been studied in humans.  

 Study Findings Adverse Events  Source 

h
u
m

an
 



 

Reduction in serum LDL, increase in serum HDL, 

and no change to serum or hepatic TAG in 

cholesterol-fed mice.  

None reported.  (48) 

 

Fisher rats treated with diet-induced fatty liver and 

steatohepatitis saw reduction in liver TAGs. 

Increase in ALT and AST levels. No side 

effects on heart rate. 

(103) 

MB07811 (VK2809) - Prodrug that undergoes first pass intrahepatic activation. Selective TRβ agonist.   

 Study Findings Adverse Events Source 

 Phase 2 randomized, double-blind trial of patients 

with NAFLD and elevated LDL levels showed 

reduction of hepatic fat content by at least 30% and 

reduction in LDL.   

No serious adverse events reported.  (115) 

Phase 1 double-blind, randomized control trial 

assessing safety and tolerability in patients with 

mildly elevated cholesterol levels. Dose dependent 

reduction of LDL, TAG, Lp(a), apoB levels.  

No serious adverse events reported. Trial 

lasted 14 days.  

(116) 
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Table 2: TH and TH metabolites have been studied in the treatment of hyperlipidemia and NAFLD.  

Levothyroxine (LT4) - The inactive form of thyroid hormone, and preferred treatment of hypothyroidism.    

 Study Findings Adverse Events Source 

 

Euthyroid, diabetic men with steatosis as measured 

by magnetic resonance spectroscopy were treated 

with low dose LT4 to achieve TSH 0.34-1.70 mIU/L. 

After 16 weeks, intrahepatic lipid content was 

reduced without change to TC, LDL, HDL. 

3 men experienced chest discomfort, 

classified as grade 1 (mild).  

(117) 

Hypothyroid patients with TSH > 10 mIU/L were 

treated with LT4 showed a reduction in the 

prevalence of NAFLD as measured by ultrasound. 

Also had reduction in TC, LDL, TAG.  

None reported.  (118) 

 

 

 

 

 

 

 

h
u
m

an
 



Diiodothyronine (T2) – Naturally occurring TH metabolite.  

 Study Findings Adverse Events Source 

 

Rats on HFD treated with T2 showed reduction in 

hepatic fat accumulation, serum and liver TAG 

accumulation, and less body weight gain compared to 

controls on HFD without T2 treatment.  

None reported.  (121) 

Triiodothyroacetic acid (Triac) – Naturally occurring TH metabolite and analogue with high TR affinity.  

 Study Findings Adverse Events Source 

 

Euthyroid women with a goiter had a drop in HDL 

and no change to LDL and TAG serum levels.  

Non-significant trend towards reduced bone 

density at the hip. 

(119) 

Reduction in serum TC, LDL, and apoB levels in 

patients who were surgically hypothyroid s/p total 

thyroidectomy for thyroid cancer.  

Increase ALP and increase excretion of 

pyridinoline and deoxypyridinoline thought 

to reflect increase skeletal turnover.  

(120) 
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Rats on HFD treated with T2 had a reduction in 

hepatic TAG and ceramide accumulation with 

induction in autophagy/lipophagy.  

None reported.  (104) 

3-iodothyronamine (T1AM) – Naturally occurring TH metabolite.  

 Study Findings Adverse Events Source 

 

Spontaneously overweight female mice treated with 

low and high dose T1AM showed reduction in body 

weight and TC but an increase in serum TAG on high 

dose T1AM compared to controls.  

None reported.  (105) 
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