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Key messages

►► Within the general population, only patients at 
risk of liver disease should be screened using 
non-invasive tests (NITs) due to the potential 
for false positive results.

►► Serum-based tests can reliably exclude 
advanced fibrosis/cirrhosis and can be 
integrated into point-of care testing in the 
community.

►► Sonographic elastography techniques are more 
accurate at diagnosing cirrhosis than serum 
NITs and can be confirmatory of a high serum 
test result.

►► Using concurrent serum and vibration-
controlled transient elastography increases 
diagnostic accuracy and specificity for 
determining advanced fibrosis.

►► Obesity significantly impacts scan success rate 
and validity of newer sonographic elastography 
methods such as point and shear wave 
elastography.

►► Serum and sonographic elastography tests have 
limited accuracy in monitoring fibrosis change 
in response to therapy.

►► In patients with non-alcoholic fatty liver 
disease (NAFLD), stable AST-Platelet Ratio 
Index, Fibrosis Score 4 and NAFLD Fibrosis 
Scores confirm absence of fibrosis progression, 
however, score increase is poorly predictive of 
fibrosis progression.

►► MR elastography is currently the most accurate 
NIT across the spectrum of liver fibrosis and 
offers promise in the assessment of response to 
antifibrotic drugs.

Abstract
Liver fibrosis should be assessed in all individuals with 
chronic liver disease as it predicts the risk of future 
liver-related morbidity and thus need for treatment, 
monitoring and surveillance. Non-invasive fibrosis tests 
(NITs) overcome many limitations of liver biopsy and 
are now routinely incorporated into specialist clinical 
practice. Simple serum-based tests (eg, Fibrosis Score 4, 
non-alcoholic fatty liver disease Fibrosis Score) consist 
of readily available biochemical surrogates and clinical 
risk factors for liver fibrosis (eg, age and sex). These have 
been extensively validated across a spectrum of chronic 
liver diseases, however, tend to be less accurate than 
more ’complex’ serum tests, which incorporate direct 
measures of fibrogenesis or fibrolysis (eg, hyaluronic 
acid, N-terminal propeptide of type three collagen). 
Elastography methods quantify liver stiffness as a marker 
of fibrosis and are more accurate than simple serum 
NITs, however, suffer increasing rates of unreliability 
with increasing obesity. MR elastography appears more 
accurate than sonographic elastography and is not 
significantly impacted by obesity but is costly with limited 
availability. NITs are valuable for excluding advanced 
fibrosis or cirrhosis, however, are not sufficiently 
predictive when used in isolation. Combining serum and 
elastography techniques increases diagnostic accuracy 
and can be used as screening and confirmatory tests, 
respectively. Unfortunately, NITs have not yet been 
demonstrated to accurately reflect fibrosis change in 
response to treatment, limiting their role in disease 
monitoring. However, recent studies have demonstrated 
lipidomic, proteomic and gut microbiome profiles as well 
as microRNA signatures to be promising techniques for 
fibrosis assessment in the future.

Introduction
Despite the considerable regenerative capacity of 
the liver, chronic injury leads to the development 
of hepatic fibrosis. Fibrosis occurs as a gradient 
of severity, which increases in the presence of 
continuing insult, but may also reverse with removal 
of the injurious agent or infection.1 The degree of 
liver fibrosis in patients with chronic liver disease 
(CLD) predicts the likelihood of developing liver-
related morbidity and death.2 Thus, assessment of 
liver fibrosis is an essential part of the evaluation 
of any patient with CLD in order to prognosti-
cate, stratify therapeutic and surveillance strategies 
and evaluate response to treatment over time. In 
addition, fibrosis has been used as a key surrogate 
end point for clinical trials in patients with CLD 
allowing expedited approval of efficacious drug 
treatment.

The optimal method for evaluating liver fibrosis 
should be accurate (precise in its measurement), 
reproducible (providing the same result on repeated 
measurements) and dynamic (responsive to change 
in fibrosis levels over time). Additional important 
characteristics include acceptability to the patient 
and physician, accessibility and cost-effectiveness. 
Liver biopsy provides a direct measure of liver 
fibrosis, however, has well-described limitations 
of invasiveness with limited patient and physician 
acceptability, interobserver and intraobserver vari-
ability and cost. The potential complications of the 
procedure include pain, infection, bleeding, perfo-
ration of the organs near the liver and extremely 
rarely, even death. In addition, current histopa-
thology fibrosis staging systems provide only a 
semiquantitative measure of fibrosis, which may 
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Table 1  Comparison of blood-based biomarkers of liver fibrosis

Biomarker Components Disease specificity Validation Accuracy*
Indeterminate
cases†

Prognostic 
ability*

APRI AST, platelets CHC, NAFLD +++ +/++ 50%–60% +

FIB-4 AST, ALT, platelets, age CHC, NAFLD +++ +++ 20%–30% ++

NAFLD fibrosis score Age, BMI, IFG/diabetes, AST, ALT, platelets, albumin NAFLD +++ +++ 20%–35% ++

Fibrotest/fibrosure Age, sex, bilirubin, GGT, α2M, haptoglobin, apo-A1 CHC, CHB,
ALD, NAFLD

+++ +++‡ 0%–35% ++++

Hepascore Age, sex, bilirubin, GGT, α2M, HA. CHC, CHB,
ALD, NAFLD

+++ ++++ 0%–30% ++++

Fibrospect (CHC) α2M, HA, TIMP-1 CHC ++ +++‡ 0% NA

Fibrospect (NASH) α2M, HA, TIMP-1 NAFLD + ++++ 0%–40% NA

FibroMeterV2G (virus) Age, sex, platelets, ALT, AST, GGT, PTI, urea, α2M, CHC, CHB ++ +++ 0% ++++

FibroMeter (SNAFFLED) Age, sex, weight, platelets, ALT, AST, ferritin, glucose NAFLD ++ ++ 0%–35% NA

Enhanced liver fibrosis score HA, TIMP-1, PNPIII CHC, CHB, ALD, NAFLD, 
PSC

+++ ++++/+++++ 0%–40% ++++

+++++AUC ≥0.90, ++++AUC 0.85–0.89, +++AUC 0.80–0.84, ++AUC 0.75–0.79, +AUC <0.75 (Harrell’s c index substituted for AUC for prognostic category).
*Accuracy for determining advanced (bridging) fibrosis abstracted from meta-analyses where available7 9 12 118 or from large cohorts of chronic liver disease patients.26 59 74 119–123

†Proportion of cases falling within an indeterminate range for the prediction of advanced fibrosis.6 38 72 119 120 124–127

‡AUC for significant (F2-4) fibrosis.
ALD, alcoholic liver disease; ALT, alanine aminotransferase; Apo-A1, apolipoprotein-A1; APRI, AST-Platelet Ratio Index; AST, aspartate aminotransferase; AUC, area under the 
curve; BMI, body mass index; CHB, Chronic hepatitis B; CHC, chronic hepatitis C; HA, hyaluranic acid; IFG, impaired fasting glucose; α2-M, α2-macroglobulin; NA, not applicable; 
NAFLD, non-alcoholic fatty liver disease; PNPIII, procollagen N-terminal peptide III; PSC, primary sclerosing cholangitis; PTI, prothrombin index; TIMP-1, tissue inhibitor of matrix 
metalloproteinase-1.

not be sensitive to subtle changes in fibrosis over time. Non-
invasive tests (NITs) including blood-based biomarkers and 
imaging techniques, such as elastography, overcome a number 
of these limitations and are generally preferred by patients and 
physicians in routine clinical practice.

NITs have been available for nearly two decades, and are 
already routinely incorporated into clinical practice in many 
centres. Nonetheless, data are still emerging regarding the 
optimal way to use these tests (screening vs diagnosis, single vs 
multiple, combination of tests together or sequential). Many tests 
continue to be refined and their pitfalls and limitations as well 
as their role in monitoring fibrosis over time or in response to 
treatment are currently being defined. In addition, recent inno-
vations in elastography, imaging and omics methods offer the 
potential for increased diagnostic accuracy and will be discussed 
in this review.

General principles
Non-invasive fibrosis methods provide a continuous measure 
from which a cut-off is chosen to predict a binary degree of liver 
fibrosis, such as advanced (bridging) fibrosis or cirrhosis. Under 
standardised conditions, the accuracy of these methods is typi-
cally robust for advanced fibrosis/cirrhosis, however, the diag-
nostic characteristics vary significantly depending on the cut-off 
value. Typically, a ‘high’ cut-off value provides greater specificity 
for advanced fibrosis and cirrhosis, and a ‘low’ cut-off provides 
greater sensitivity for no or minimal fibrosis. Due to the gener-
ally low prevalence (or pretest probability) of advanced fibrosis 
and cirrhosis in the population being tested, the positive predic-
tive value (PPV) of a result above the high cut-off is typically 
modest, and often not sufficient to be diagnostic in the absence 
of additional supportive clinical information. In contrast, the 
negative predictive value (NPV) of NITs is generally very high, 
allowing the clinician to be confident that advanced fibrosis or 
cirrhosis has been excluded.

Blood-based biomarkers
Simple biomarker blood tests (eg, Fibrosis Score 4 (FIB-4), AST-
Platelet Ratio Index (APRI), non-alcoholic fatty liver disease 
(NAFLD)) incorporate ‘indirect’ markers of liver fibrosis such 
as liver aminotransaminases, often with clinical parameters such 
as age and sex, to increase accuracy. ‘Complex’ biomarker blood 
tests (eg, Enhanced Liver Fibrosis Score (ELF), Hepascore, Fibro-
spect II) incorporate some of the direct markers of fibrogenesis 
and fibrinolysis (eg, serum tissue metalloproteinases and hyal-
uronic acid) and require specialist laboratory assessment but are 
generally more accurate than ‘simple’ biomarkers in predicting 
advanced fibrosis and cirrhosis (table 1).3–6

The accuracy of blood-based NITs varies according to the 
underlying aetiology of CLD. Several serum tests are specific 
for particular aetiologies of CLD; FibroMeter and Fibrospect 
II, have hepatitis virus and NAFLD specific algorithms, and the 
NAFLD Fibrosis Score is specific for NAFLD. Other tests have 
been developed in patients with chronic hepatitis C (CHC) (eg, 
Fibrotest, Hepascore) but are accurate in other liver disease 
groups.7 APRI was developed in CHC patients and consists 
of readily available parameters (aspartate aminotransaminase, 
platelet count) and has good accuracy for advanced fibrosis 
(summary area under the curve (AUC) 0.80) in this population,8 
but performs modestly in NAFLD (summary AUC 0.77),9 and 
is less reliable in chronic hepatitis B (CHB)10 and alcoholic liver 
disease (ALD).11 FIB-4 is also composed of aminotransaminase 
levels and platelets and was developed in CHC/HIV coinfected 
patients and has been validated in CHC and NAFLD. The ELF 
test is composed of three direct markers of fibrogensis/lysis and 
has been validated as an accurate predictor (AUC >0.85) of 
advanced fibrosis in patients with mixed aetiologies of CLD with 
the exception of patients with CHB.12 13

Confounding factors need to be excluded when interpreting 
blood-based NITs, particularly significant liver and systemic 
inflammation, which may increase blood biomarker levels inde-
pendently of fibrosis stage.14 Biomarkers incorporating bilirubin 
(Hepascore, Fibrotest) may be falsely increased in the setting of 
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Table 2  Comparison of elastography techniques in the prediction of liver fibrosis

Elastography technique Validated disease groups Accuracy† Reliability (ICC) Prognostic ability* Reliability criteria Indeterminate cases†

VCTE CHC, CHB, NAFLD, ALD, PBC, PSC +++/++++ 0.99 NAFLD, CHC, PBC, PSC Yes 30%–40%

pSWE HCV, NAFLD ++/++++ 0.98 NA Yes NA

2D-SWE HCV, HBV, NAFLD +++++ 0.98–1.0 NA No NA

2D-MRE CHC, CHB, NAFLD +++++ 0.99 PSC, cirrhosis Yes NA

+++++AUC ≥0.90, ++++AUC 0.85–0.89, +++AUC 0.80–0.84, ++AUC 0.75–0.79, +AUC <0.75 (Harrell’s c index substituted for AUC for prognostic category).
ICC based on phantoms for sonographic elastography techniques128 and patients for MRE.47

*Accuracy for determining advanced (bridging) fibrosis abstracted from meta-analyses where available or large patient cohorts.24 27 54 55 129

†Proportion of cases falling within an indeterminate range for the prediction of advanced fibrosis.124 130

ALD, alcoholic liver disease; AUC, area under the curve; CHB, Chronic hepatitis B; CHC, chronic hepatitis C; 2D-MRE, 2- dimensional MR elastography; 2D-SWE, 2-dimensional 
shear wave elastography; HBV, hepatitis B virus infection; HCV, hepatitis C virus infection; ICC, Intraclass correlation coefficient; NA, not applicable; NAFLD, nonalcoholic fatty 
liver disease; PBC, primay biliary cholangitis; pSWE, point shear wave elastography; VCTE, Vibration-controlled transient elastography.

Table 3  Limitations of blood-based biomarkers and elastography techniques for the prediction of liver fibrosis

Fibrosis marker Failure rate Factors related to failure
Invalid/unreliable result 
rate Confounders

Indirect blood-based biomarkers Negligible – 30% Indeterminate (FIB-4, 
NAFLD Fibrosis Score)

Acute hepatitis, cholestasis, systemic inflammation, 
Gilberts/hemolysis (scores with bilirubin)

Direct blood-based biomarkers Negligible – ? Acute hepatitis, systemic inflammation

VCTE 3%–14% Obesity (less with XL probe), ascites 1%–9% Acute hepatitis, cholestasis, beta-blockers, food 
ingestion, obesity, cardiac congestion.

pSWE 0%–1% Obesity 16%–24% Acute hepatitis, food ingestion, obesity*

2D-SWE 1%–13% Obesity 0% Acute hepatitis, food ingestion*

2D-MRE <5% Claustraphobia, inability to fit in MRI or 
breath hold,

Negligible Iron overload, acute hepatitis, massive ascites

*Additional confounding factors for VCTE also likely to impact SWE.
2D-MRE, 2-dimensional MR elastography; 2D-SWE, 2-dimensional shear wave elastography; FIB-4, Fibrosis Score 4; NAFLD, non-alcoholic fatty liver disease; pSWE, point shear 
wave elastography; VCTE, Vibration-controlled transient elastography.

Gilbert or haemolysis. In addition, FIB-4 and NAFLD Fibrosis 
Score may be less accurate in individuals <35 years (though the 
prevalence of advanced fibrosis is low in this group) and become 
less specific with increasing age, with higher cut-offs proposed to 
exclude advanced fibrosis in those >65 years.15 ELF also increases 
with age, although revised cut-offs are not recommended at this 
time.16

Elastography
Elastography techniques take advantage of the physical properties 
of liver fibrosis that make the liver ‘stiffer’ by quantifying ‘sheer 
wave’ velocity or tissue displacement generated by an ultrasonic 
or physical impulse. Vibration-controlled transient elastography 
(VCTE or Fibroscan) and MR elastography (MRE) use a mechan-
ical driver to generate the sheer wave and measure its velocity using 
sonographic Doppler or MR techniques, respectively. Point sheer 
wave elastography (pSWE or acoustic radiation force impulse) 
and two-dimensional SWE (2D-SWE) use high frequency sono-
graphic impulses for sheer wave generation. pSWE measures the 
shear wave generated from one sonographic frequency in metres/
second whereas 2D-SWE measures sonographic waves in multiple 
frequencies in real-time using 2D ultrasound in kilopascals (kPa). 
Lastly, real-time (strain) elastography uses standard ultrasound to 
measure liver tissue displacement (or strain) induced by a sono-
graphic probe or by cardiac impulse. Due to the different meth-
odology used between technologies, elastography values between 
different techniques are not comparable.

Sonographic elastography techniques
VCTE was the first elastography technique to be commercial-
ised and thus has had extensive validation and evaluation of 

its strengths and limitations in comparison with other methods 
(tables 2 and 3). Liver stiffness measurement (LSM) by VCTE 
may be increased by acute hepatitis and cholestasis, respiration, 
congestive cardiac failure, recent food and excess alcohol inges-
tion and increasing body mass index (BMI).17–19 Confounding 
factors for other elastography techniques are less defined, 
however, are likely to be similar. Using VCTE with the obesity-
specific (XL) probe, inability to scan (ie, scan failure) or unreli-
able scans occur in 3%–14% and 1%–9% of patients, respectively, 
and are more likely with significantly obese patients and inex-
perienced operators.20–24 Approximately 30% of obese patients 
had either unreliable or invalid scans in a prospectively evalu-
ated cohort of 291 patients with NAFLD irrespective of whether 
VCTE, p-SWE or 2D-SWE was used.23 Intraobserver agreement 
for VCTE is excellent (intraclass correlation coefficient 0.98), 
though is lower with lesser degrees of fibrosis, increasing steatosis 
and BMI.25 pSWE has a very low scan failure rate (0%–1%), 
however, is unreliable in 16%–24% of subjects24 26 27 and has 
a learning curve, with intraobserver agreement increasing after 
130 examinations.28 2D-SWE does not have validated reli-
ability criteria and thus invalid scans are typically not reported 
though has a failure rate of 1%–13%, being lower in patients 
with CHB and higher in patients with NAFLD.23 24 29 30 2D-SWE 
also requires a degree of radiological expertise compared with 
VCTE, with greater intraobserver variability noted in less expe-
rienced operators.31 In the absence of an obesity-specific probe, 
increasing BMI appears to be a significant limitation for both 
point and 2D SWE techniques, with unreliable or invalid scans 
being reported in approximately 30% of obese (BMI >30 kg/
m2) patients with NAFLD and unreliable pSWE scans reported 
in >50% of patients when the skin to liver capsule distance is 
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≥30 mm.23 32 33 Increasing BMI also reduces accuracy of VCTE 
with AUC values for determining advanced fibrosis falling to 
<0.80 in morbidly obese (BMI ≥35 kg/m2).17 Real-time elastog-
raphy has been criticised for observer variability stemming from 
its qualitative nature and has limited validation.34

Cut-offs are variable between aetiologies of liver disease and 
not universally accepted within causes of liver disease, however, 
low readings (VCTE <6.0 kPa or Aixplorer 2D-SWE <7.1 kPa) 
reliably exclude advanced fibrosis and cirrhosis.35 Elevated read-
ings may be falsely high and repeating VCTE within 6 months of 
a high reading can increase the certainty of advanced fibrosis or 
cirrhosis.36 Nonetheless, the predictive value of VCTE increases 
as LSM increases, with readings >20 kPa highly suggestive of 
cirrhosis and raising the possibility of significant portal hyper-
tension. The current Baveno VI consensus suggests an LSM 
threshold of 20 kPa or platelet count <150 for endoscopic 
screening for varices.37

Overall, 2D-SWE appears to have comparative accuracy 
to VCTE in ALD and NAFLD, but greater accuracy in other 
aetiologies, particularly among patients with CHB.9 23 24 35 38 
Prospective studies comparing VCTE and pSWE are limited, 
however, suggest no significant difference in accuracy.23 24 28 39 
Further prospective comparative studies are required to confirm 
the relative strengths and limitations of these elastography tech-
niques, although one advantage of the SWE techniques is their 
ready application to conventional ultrasound machines, whereas 
VCTE can be used as a point-of care test.

MR elastography
MRE examines whole sections of liver and thus is less prone 
to sampling error and has a low technical failure rate (≤5%), 
although is higher in patients with massive ascites.40–42 A 
newly developed spin-echo echo-planar sequence overcomes 
previous difficulties caused by significant hepatic iron.43 Reports 
of the impact of obesity on successful MRE acquisition are 
conflicting,40 44 however, it appears less problematic in compar-
ison with VCTE with successful scans recorded in 96% and 88%, 
respectively, of patients with severe obesity (BMI ≥35 kg/m2).45 
MRE can be performed on different MRI machine models and 
tesla strengths46 and has robust reproducibility between radiolo-
gists.47 Experience with MRE is limited in comparison to VCTE, 
however, studies in patients with predominately chronic viral 
hepatitis or NAFLD, have demonstrated it has excellent accuracy 
for the prediction of significant fibrosis, advanced fibrosis and 
cirrhosis with AUC values consistently above 0.90.48 Obesity, 
hepatic inflammation and degree of steatosis does not impact 
on accuracy in NAFLD, however, increased LSMs are observed 
with hepatic inflammation in chronic viral hepatitis B and C.49–52 
The number of comparative studies examining MRE and sono-
graphic elastography techniques is also limited, however, data 
to date demonstrates MRE to have significantly greater accu-
racy than VCTE and pSWE in NAFLD,53 and is more accurate 
than VCTE in CHB.9 54 55 Other MR techniques using diffusion 
weighted imaging or contrast have also been assessed as diag-
nostic tests for liver fibrosis, however, appear to be less accurate 
than MRE.56 57

Blood-based biomarkers versus elastography
Accuracy
Overall, ultrasound elastography techniques have greater accu-
racy than simple ‘direct’ blood biomarkers (APRI, FIB-4, BARD) 
for the prediction of cirrhosis in chronic viral hepatitis, ALD 
and NAFLD.6 58–62 Blood-based markers have the advantage of 

a negligible failure rate and reliability that is not impacted by 
increasing BMI (table 3). However, in the setting of a reliable 
scan, VCTE and 2D-SWE have greater accuracy than ‘direct’ 
blood-based biomarkers (ELF, Fibrotest, Hepascore) for the 
prediction of advanced fibrosis and cirrhosis across a range of 
CLDs.38 62–65 When patients with unreliable scans are included 
on an ‘intention to diagnose’ basis, the accuracy to predict 
advanced fibrosis in patients with ALD is similar between ELF 
and Fibrotest, VCTE and 2D-SWE.5 38 MRE has greater accu-
racy than indirect blood markers in NAFLD and chronic viral 
hepatitis.66–69 Meta-analyses of NAFLD cohorts have demon-
strated MRE to have the highest accuracy for fibrosis prediction, 
however, few studies with direct comparisons were available.54 
Further prospective comparative studies involving MRE, sono-
graphic elastography methods and direct blood biomarkers are 
required.

Combination assessment
In general, blood-based biomarkers and elastography techniques 
are excellent at excluding advanced fibrosis and cirrhosis with 
high NPVs (>85%) but have modest ability to diagnose cirrhosis 
with PPVs between 40% and 70%.6 58 In addition, NITs may 
have upper and lower cut-offs which are optimised to predict or 
exclude fibrosis, meaning some results fall within an indetermi-
nate or grey zone (table 1). Approximately one-third of results 
of serum-based tests and VCTE may be indeterminate with inde-
terminate ranges for other elastography techniques yet to be well 
validated. Using concurrent serum NITs (Fibrotest, FIB-4, NFS) 
with VCTE increases diagnostic accuracy and specificity, with 
concordant results reliably excluding or confirming cirrhosis 
(NPV and PPV >90%), however, discordant results requiring a 
liver biopsy occur in 25%–70%.60 70–72 Sequential serum NITs, 
where a second test is used when the first is in the ‘grey zone’, 
have been examined in CHC, where the ‘SAFE’ algorithm (APRI 
followed by Fibrotest) avoids more biopsies but at the expense 
of lower accuracy and PPV (56%–78%) for the diagnosis of 
cirrhosis.70 71 73 Lastly, the combination of a serum NIT (FibroM-
eter second generation) and VCTE into one propriety algorithm 
(FibroMeterVCTE2G) has been demonstrated to have a high degree 
of accuracy (AUC >0.9) for the prediction of cirrhosis in cohorts 
of predominately viral hepatitis patients, although has added 
complexity and requires independent validation.74

Population-based screening
Using a serum NIT as an initial screening test followed by VCTE 
is an attractive algorithm for screening large populations. Serum 
NITs are widely available, inexpensive, applicable in obese 
patients and lend themselves into incorporation into clinical 
decision support systems and point-of-care testing where elas-
tography techniques are not available.75 Blood-based biomarkers 
also predict risk of liver related death in the general population 
supporting their suitability as a screening test for liver disease.76 
Nonetheless, their strength is excluding (rather than diagnosing) 
advanced fibrosis with poor agreement between serum NITs in 
predicting advanced fibrosis.77

Elastography techniques have greater accuracy for the diag-
nosis of cirrhosis than blood-based NITs and thus are suitable 
as confirmatory diagnostic tests (figure 1). Sonographic elastog-
raphy is increasingly available in commercial radiology prac-
tices, although is less accurate than MRE which is expensive 
and limited to specialist centres. VCTE has been implemented 
in primary care screening programmes of subjects with or at risk 
of CLD and can identify patients with cirrhosis and those at risk 
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Figure 1  Comparative accuracy and accessibility of non-invasive 
fibrosis tests (NITs). 2D-SWE, two-dimensional sheer wave elastography; 
pSWE, pulse shear wave elastography; VCTE, vibration-controlled 
transient elastography.

Figure 2  Algorithm for assessment of advanced fibrosis in patients 
with chronic liver disease. A liver biopsy can be considered in the 
correct clinical context following an indeterminate or high serum test 
result in conjunction with a high elastography result as the positive 
predictive value for advanced fibrosis may be less than 80%. MRE, MR 
elastography; NPV, negative predictive value; VCTE, vibration-controlled 
transient elastography. ALT, alanine aminotransferase.

of liver decompensation, however, dedicated machines, operator 
and specialist interpretation is required.21 78 One study screening 
1358 subjects undergoing a community-based medical check-up 
with VCTE revealed 7.5% had elevated LSM (>8 kPa), of whom 
all had liver disease and 0.6% with previously undiagnosed 
cirrhosis.78 However, 12 of every 13 subjects in this population 
did not have liver disease (defined by VCTE) and 166 subjects 
were scanned for every cirrhotic found, suggesting implemen-
tation of a risk factor stratification strategy and/or initial serum 
NIT screening test is sensible. The optimal serum screening NIT 
is unclear, however, most experience is with non-propriety tests 
such as APRI, FIB-4 and NAFLD Fibrosis Score. Unfortunately, 
the sensitivity of these markers is typically <80%,8 54 74 raising 
the question whether more accurate ‘direct’ serum NITs would 
be a preferable first-line test at the cost of extra expense. In addi-
tion, age impacts the accuracy of simple indirect markers such as 
FIB-4 and NAFLD Fibrosis Score, limiting their utility in subjects 
>60 years.75 79

A serial screening strategy in general practice revolving around 
identification of risk factors for liver disease (hazardous alcohol 
use, type 2 diabetes or elevated ALT), followed by a simple indi-
rect blood biomarker (BARD or AST/ALT ratio), found a normal 
blood biomarker excluded 12% of patients with liver disease risk 
factors from further investigation with VCTE. Following VCTE, 
a 3% prevalence of cirrhosis was found. Notably, APRI and FIB-4 
would have missed 100% and 82% of the cirrhosis patients if 
substituted for VCTE highlighting the limitations of these simple 
serum NITs as confirmatory diagnostic tests.80 A similar step-
wise approach has been suggested for general population based 
screening with a Spanish study of 3076 subjects recommending 
VCTE only in those who had risk factors for liver disease (58% 
of the population) and subsequently an elevated (≥60) fatty 
liver index (33% of the whole population). The prevalence of 
LSM ≥9.2 kPa was 8.7% in this subset (representing 2.8% of 
the whole population) suggesting that further refinement with 
a screening serum NIT may be beneficial.81 A suggested algo-
rithm for fibrosis assessment in individuals with CLD using serial 
blood-based biomarkers and elastography is outlined in figure 2.

Prediction of prognosis
Blood-based biomarkers predict hepatic decompensation and 
liver-related death in a range of CLD supporting their validity 
as diagnostic tests. ‘Complex’ blood biomarkers are generally 
more accurate than ‘simple’ biomarkers,59 82 however, these 
tests have limited discriminative ability for these long-term 

outcomes at an individual patient level. VCTE is more accu-
rate in predicting outcomes than serum NITs (such as FIB-4), 
although when patients with unreliable scans are included on 
an ‘intention to diagnose’ basis, the accuracy to predict future 
liver-related events is similar.5 38 Emerging data suggest that ELF 
≥9.8 is associated with higher risk of progression to cirrhosis 
in patients with bridging fibrosis due to NAFLD, and an ELF 
≥11.3 is associated with higher risk of hepatic decompensation 
in patients with cirrhosis due to NAFLD.83 MRE also predicts 
future decompensation and survival in cirrhosis patients inde-
pendently of MELD score, demonstrating its utility beyond diag-
nosing cirrhosis alone.84 85

Non-invasive assessment of antifibrotic treatment response
Experience in evaluating NITs in response to antifibrotic treat-
ment is limited. Treatment of inflammatory CLD is typically 
associated with improvement of liver inflammation, which may 
in turn lead to reduction in liver elasticity and blood biomarkers. 
Consequently, NIT values tend to improve independently of 
fibrosis regression leading to a tendency to underestimate 
fibrosis stage, thereby reducing the utility of currently available 
NITs for assessment of short-term fibrosis response to treatment 
(table 4).86 87

In NAFLD, serum biomarkers including ELF, NFS, FIB-4 and 
APRI have poor to modest accuracy (AUC <0.75) in predicting 
response of liver fibrosis to drug treatment88 89 or lifestyle 
intervention90 and cannot be recommended to monitor for 
short-term (≤1 year) treatment response. In a 24-week trial of 
selonsertib in NAFLD, MRE and VCTE had poor accuracy for 
predicting fibrosis improvement (AUC <0.65), however, the 
accuracy of MRE increased to 0.79 when combined with base-
line MRE value, suggesting utility for monitoring antifibrotic 
treatment response.89 MRE may also be useful for monitoring 
fibrosis progression over time in the absence of treatment, 
with a minimum 15% increase in value over 1.4 years associ-
ated with a 3.4-fold higher risk of fibrosis progression in a 
cohort of 102 patients with NAFLD.91 An algorithm combining 
platelet count, ALT normalisation and change in HbA1c had 
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high accuracy (AUC 0.96) for predicting fibrosis improvement 
following 1 tear of life style intervention in patients with NASH, 
however, requires further validation.90 In the absence of inter-
vention, FIB-4, APRI and NAFLD Fibrosis Score have poor to 
modest accuracy in detecting any fibrosis progression (AUCs 
<0.75), though increases (AUC 0.80–0.82) for the prediction 
of progression to advanced fibrosis.92 These simple parameters 
do not improve with fibrosis regression in NAFLD, and their 
strength is confirming absence of progression (NPVs 89%–90%) 
rather than diagnosing progression to advanced fibrosis (PPVs 
44%–49%).

In CHC, diagnostic accuracy of VCTE postviral erad-
ication appears to fall (AUC <0.80) and the accuracy of 
blood-based biomarkers is poor (AUC <0.70) up to 5 years post-
treatment.93 94 Beyond 5 years, however, the accuracy of elas-
tography and simple blood-based NIT seems to improve though 
revised cut-offs are required.95 One study of 84 CHC postliver 
transplant patients found VCTE but not ELF, remained accu-
rate at predicting advanced fibrosis following successful antiviral 
treatment.87

Data from cohorts of cirrhotic CHC and CHB patients 
achieving viral eradication or control, suggests that while liver 
stiffness and serum-based NITs improve with successful treat-
ment, neither are sufficiently reliable in excluding risk of future 
hepatocellular carcinoma (HCC).96 97 Furthermore, LSM98 
cirrhosis,93 94 99 thus, ceasing HCC surveillance in cirrhotic 
patients with improving NITs on antiviral therapy cannot be 
currently recommended.

Emerging technologies
Imaging-based techniques
Three-dimensional (3D) MRE evaluates sheer wave propa-
gation in multiple planes and avoids mathematical assump-
tions inherent to 3D techniques. Although 3D-MRE has been 
demonstrated to be more accurate in predicting advanced 
fibrosis in patients with CHB, CHC and NAFLD compared 
with 2D-MRE,67 100 further validation is required to understand 
the incremental benefit of this technique. New methods using 
multiparametric MRI incorporate damping ratio at a lower 
frequency using 3D MRE along with shear wave stiffness on 
MRE and these may further help refine the detection of NASH 
and NASH-related fibrosis.101 102

Collagen synthesis markers
The deposition of fibrosis is a dynamic process reflecting an 
imbalance of fibrogenesis and fibrinolysis. The rate of turn-
over of hepatic collagen in liver biopsies can be determined by 
isotope techniques and is highly correlated with the fractional 
synthesis rate of plasma lumican, which is a peptide mediator 
of collagen synthesis which is overexpressed in the presence 
of liver fibrosis.98 103 Thus, the plasma kinetics of lumican can 
provide a real-time estimate of the dynamics of fibrosis turn-
over within the liver and appears as an attractive technique for 
rapid assessment of drug efficacy and determination of poten-
tial for fibrosis progression as well as regression in early phase 
trials.104 105

During extracellular matrix formation, the N-terminal propep-
tide of type 3 collagen (Pro-C3) is cleaved from procollagen of 
type III collagen, reflecting fibrogenic activity. Serum Pro-C3 
levels correlate with liver fibrosis and offers promise as an accu-
rate fibrosis biomarker in NAFLD patients when combined with 
simple clinical parameters.106 107

Genetic prediction models
Genetic variability between individuals leads to differential 
susceptibility towards the development of liver fibrosis and is 
estimated to account for half of the phenotypic variance in CLDs 
such as NAFLD.108 Genetic variants related to single nucleo-
tide polymorphisms within genes or epigenetic changes such as 
differential DNA methylation, have been associated with fibrosis 
in CHC and NAFLD.109–111 Although most DNA methylation 
studies have characterised changes in liver biopsies, plasma levels 
of cell-free circulating DNA methylation of PPAR-gamma may 
be a promising and accessible diagnostic marker.111 It is likely 
that the inclusion of clinical risk factors such as age are still likely 
to be required in order to develop accurate predictive models.112 
Validation across different ethnicities remains important to 
demonstrate the generalizability of gene-based scores.

Microbiome
The gut microbiome has been implicated in the genesis of liver 
injury and fibrosis in CLD. Proof-of-principle studies using 
different sequencing technology have demonstrated that the 
bacterial composition in stool varies according to fibrosis stage 
in patients with NAFLD.113 114 Emerging data have shown that 
a metagenomic signature of gut microbiome along with age, 
BMI and ethnicity can be used to detect presence of advanced 
fibrosis with high accuracy among patients with biopsy-proven 
NAFLD.114 Using a familial study design, a recent study demon-
strated that a 16S signature of gut microbiome was able to differ-
entiate family members who had NAFLD cirrhosis from those 
who did not with a high diagnostic accuracy (AUC >0.9).113 
Further studies are underway to validate these findings in inde-
pendent external validation cohorts.

‘Omics including miRNA
Characterisation of the phenome associated with liver fibrosis 
offers a hypothesis free approach to identify novel markers of 
fibrosis. Metabolomic and proteomic approaches using mass 
spectroscopy screening have identified numerous molecules 
associated with advanced fibrosis in NAFLD, viral hepatitis and 
ALD.115 116 Complicated methodology and lack of independent 
validation has limited translation into clinical practice. MicroR-
NA’s (miRNAs) are non-coding RNA molecules which regulate 
gene expression and have been illustrated to be differentially 
expressed in the liver of NAFLD patients according to the degree 
of fibrosis. Less work has been done examining circulating 
plasma miRNA levels, however, miRNA 122a has been associ-
ated with NASH and liver fibrosis, but has limited accuracy (AUC 
0.71 and 0.61, respectively).117 Large multicentre collaborations 
(non-invasive biomarkers of metabolic liver disease (NIMBLE), 
LITMUS and NASH-CRN) are exploring promising biomarkers 
of fibrosis in NAFLD and are likely to lead to the discovery of 
clinically relevant panels.

Conclusions
Non-invasive assessment of liver fibrosis has become part of 
routine clinical care for patients with CLD. Accurate serum 
and imaging methods are now available, along with increased 
understanding of their limitations which is required for correct 
interpretation and application. Serum markers are valuable 
for screening due their ease and cost, whereas imaging-based 
techniques lend themselves as confirmatory tests. Advances in 
imaging techniques and the promise of novel markers discovered 
by ‘omic’ approaches mean the accuracy and clinical utility of 
NITs is likely to increase further in the future.
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